
Novel Framework for Browser Compatibility
Testing of a Web Application using Selenium

Prof. Anand Motwani#1, Amber Agrawal*2, Dr. P. N. Singh#3, Prof. Anurag Shrivastava#4
#Assistant Professor, Department of Computer Science and Engineering

NRI Institute of Research and Technology, Bhopal

*Student, Department of Computer Science and Engineering
NRI Institute of Research and Technology, Bhopal

Abstract— With a wide range of web browsers available, end
users can use a variety of web browsers to access a web
application. It is now become essential to review and compare
website functionality and styles on multiple browser
platforms. For different browsers requests may be handled
and processed in a different manner based on the user agents
received from the client browser. So just testing on a single
browser may cause the application functionality to behave
differently or incorrectly on another browser. You need to
make sure that your web application works fine across
multiple browsers.
Compatibility testing is a non-functional testing in which the
application is verified to run on different browsers, various
resolution, various operating systems, etc. But testing across
multiple browsers can become very time consuming and
costly.
In this paper, our focus will be on cross-browser testing which
simply means to test a web application in multiple browsers,
and making sure that it works consistently and as intended
and does compromise in quality or features. The aim of this
paper is to create a prototype framework for browser
compatibility testing. It deals with automation testing for a
web application on different web browsers using Selenium
WebDriver. It briefly describes the tools and frameworks used
for automation testing along with the advantages and
disadvantages of automated testing with the focus on testing
user interfaces of web-based applications to achieve high
quality software.
Keywords: Test automation, Browser compatibility, Cross-
browser testing, user interface, web application, Selenium,
WebDriver and TestNG.

Keywords— Test automation, Browser compatibility, Cross-
browser testing, user interface, web application, Selenium,
WebDriver and TestNG.

I. INTRODUCTION

Any web application or piece of software which has been
developed or will be developed, has or will have some bugs.
One of the basic functions of software testing is to detect
these errors and to detect them as fast as possible. With the
increase in importance of the quality of software
applications, it has become essential that we have efficient
methods for software testing.

Organizations are now focusing on agile methodologies,
which has a shorter software lifecycle. In the attempt to
deliver quickly but an error-free product, organizations are
turning to automated testing. Automated testing is
executing tests with the help of some tools that can be run
repeatedly at any time of the day. The idea is to combine

related test cases and create a test suite. Software
automation tools execute these large and complicated tests
or test suites and generate reports. We can also compare
these results with the tests run earlier which can allow the
developers to analyse the difference. As compared to
manual testing, automation testing is more reliable,
maintainable, re-usable and comprehensive. It not only
saves time as it has less human interactions but also
decreases cost and has greater code coverage.

With the launch of various browsers and different
versions of those browsers, it becomes essential for a web
application designer to ensure that the application is
compatible with all the browsers and support if not all at
least most of the latest versions. The goal of our work in
this paper is to create a framework through which we can
easily test a web application on all browsers and their
different versions. Finally, create a report template
displaying compatibility results across browsers and
different versions.

A test automation framework is an integrated system
which defines rules of automation specific to a product. The
framework includes function libraries, test data sources and
other reusable modules. All these components are the
building blocks which when assembled will represent a
business process.

 There are several test automation tools available in the
market. This paper will focus on one such tool namely,
Selenium. Selenium is an open source tool used for
automation testing of web based applications. The tool
directly runs on the browser and supports almost all
available browsers like Google Chrome, Mozilla Firefox,
Internet Explorer, Safari, etc. It runs on all platforms such
as Windows, Linux and Macintosh. It is mainly used for
writing end to end tests for web applications and is a very
useful tool for system functional testing and browser
compatibility testing. A tool like Selenium used for browser
automation is expected to do exactly what you would
expect: automate the control of the browser so that
repetitive tasks like clicking, editing text field etc., can be
automated. But only the availability and use of the tool does
not solve our problem. Hence, we design a framework to
help us analyse other aspects.

This paper focuses on one such approach where we
propose a medium-scale framework to be able to perform
automated browser compatibility test execution and
reporting for a web application on different browsers. The
concept and its underlying requirements were tested by

Anand Motwani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5159-5162

www.ijcsit.com 5159

implementing a prototype of the framework and executing a
few automated tests for different browsers. Based on the
results of the prototype, the overall framework concept was
found to be feasible. There were certain changes made to
the framework while design from the original requirements.
The most interesting finding is that it is possible to cover
most of the cross browser testing needs to be done with the
keyword-driven approach alone.

As a conclusion to this work, results are reviewed and a
general analysis is presented on the basis of the results. This
would generally help the developers and other stakeholders
of the project to analyse and approve the usability of the
web application on different versions of multiple browsers.

Besides this introduction, this paper is organized as
follows: Section 2 summarizes some related works which
have been done to perform compatibility testing using
manual test methods and test tools. Section 3 describes the
extension of the Selenium WebDriver tool to create a
prototype of the framework, developed to support
automated compatibility testing. Section 4 reports a case
study performed to apply the proposed tool in a real
software project and the comparison between two other
strategies (manual and semi-automated tests execution).
Finally, Section 5 presents the conclusions and future work.

II. RELATED WORK

A Several people have highlighted the problems faced
when web applications are run on different browsers. A few
authors have also mentioned the problems faced in cross
browser compatibility testing of modern web applications
[1] as a ‘functional consistency’ check of web application
and presented an automated solution for it. While those
papers focus on capturing the behaviour of a web
application on different browsers and observe the behaviour
as a finite state machine navigation model, our approach is
to provide a framework which will help testers test the web
application on different browsers and come up with a report
for analysis. In another paper [4], the authors describe
common set of compatibility issues in different versions of
Internet Explorer. The focus is on application compatibility
with different versions of Internet explorer and the issues
faced by website using legacy features. The suggested
framework is used to test both static and dynamic web
pages. The idea was to list down all the use cases and based
on the application flows, classify the application as
High/Medium/low complexity application. The testing
methods are manual where the testing begins by navigating
to web pages on target Internet Explorer environment and
verified against legacy environment (previous Internet
Explorer). The page rendering in terms of misaligning of
web objects – objects on header and footer, logos, menu
items, contents implemented through web tables etc. are
verified. Then they documented issues found (as defects)
and published them in the form of ACR (application
compatibility report). Based on the issues, one can classify
the web applications as Red or Amber or Green.

Green application will be those that renders flawlessly on
target Internet Explorer. Amber application will be those
that requires minor tweak in application configuration files,
changing browser settings etc. Once these settings are done,

these applications will also work fine on target Internet
Explorer. However Red applications will be those that are
altogether incompatible on target Internet Explorer. These
applications require code remediation or code fix in order
for them to work on target Internet Explorer.

The paper also mentions some online web application
testing tools which help speed up testing and proves reliable
while testing. Using the information from this paper, we
extend the research for different browsers and their versions
not limiting only to Internet Explorer.

III. PROPOSED WORK

The idea of compatibility testing of a web application for
only one type of browser and its different versions was not
enough to ensure that the application is stable and can be
used extensively. To ensure this we would like to extend
the work and propose a framework which will allow testing
of a web application on different browsers like Internet
Explorer, Mozilla Firefox and Google Chrome.

In this work a generic framework with the help of
Selenium is proposed. Selenium is a browser automation
tool [2, 8] which lets programmer to automate operations
like: type, click and selection from a drop down of a web
page. It provides a rich set of testing functions specifically
geared to the needs of testing of a web application. One of
Selenium’s key features is the support for executing one’s
tests on multiple browser platforms. Using this feature we
will test our application’s compatibility with different types
of browsers and create a report for the same.

The prototype framework is designed to use the
Selenium WebDriver which allows support of various
browsers using a special controller, using that it
communicates directly with the web browser.

There are drivers available for all most common
operating systems and related browsers starting with
versions:- Google Chrome 12+, Internet Explorer 6+ (both
32 and 64-bit version), Opera 11.5+, Mozilla Firefox 3.6 -
18, Safari 5.1+, HtmlUnit 2.9. Support for two most
prevalent mobile platforms has also been recently added
and WebDriver now supports: Android 2.3 + (the physical
device and emulator), iOS 3+ for smartphones and iOS 3.2+
for tablets (the physical device and emulator). Not only can
we test different browsers but we can test them on different
platforms like Linux, Windows, etc.

The high level architecture of the prototype is explained
in the following diagram:

Figure 1: High level architecture

Anand Motwani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5159-5162

www.ijcsit.com 5160

The prototype framework design consists of three base
classes which include the different web drivers for each
type of browser. Then, function-specific or use-case
specific classes are created to test their execution. So, once
the base classes are ready, these are extended and test
classes are written.

Figure 2: Flowchart for prototype framework

In this work, the prototype is created for testing login
functionality of a Gmail account. Other features or use case
tests can be eventually added as separate classes and they
can extend the abstract base classes to use the browser-
specific web drivers.

Figure 3: Project structure

Another key aspect of the prototype is keyword driven
automation testing using Selenium WebDriver [5]. In
Keyword driven testing, each keyword corresponds to an
individual testing action like a mouse click, selection of a
menu item, keystrokes, opening or closing a window or

other actions. Keyword driven Testing involves a set of
keywords which define a sequence of operations. These
keywords are then used to create reusable functions mapped
to a particular functionality of the application. With the
keyword driven approach, we can automate the following
test scenarios for Gmail as under:-

1. User should able to logging in its account, when we
are entering correct username and password.

2. User should not be able to login in its account, when
any one of username and password is incorrect.

3. User should be able to view the inbox mails, etc.
For such web applications, in each test case we usually

write the methods that perform specific task. In our case,
we have created one package structure, under which we
have written browser specific classes for each browser, and
within those classes we have added methods for the same
functionality. For example, for login, we create the package
– “org.compatibility.login”, and under this we have 3
classes – Gmail_Login_Chrome, Gmail_Login_FF and
Gmail_Login_IE. Similarly we can create the methods for
each functionality. The advantage of creating use case
specific methods and classes is that we can re-use these
methods in multiple test cases. By providing different input
data, same tests can be run again, thus speeding up the
automation process and increasing productivity.

Following are screenshots from the abstract base class
for all three browsers used for testing.

Figure 4: Abstract class for Chrome

Figure 5: Abstract class for Firefox

Figure 6: Abstract class for Firefox

IV. RESULT AND DISCUSSION

Using this prototype framework, three test scripts were
written to perform compatibility testing on Gmail and
results were documented as well. All tests were executed on
Chrome and Firefox browsers. All test cases were tested
successfully. The result includes the total execution time
taken by Chrome, Firefox and Internet Explorer browsers.
In practice, it is unrealistic to automate everything in a web

Anand Motwani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5159-5162

www.ijcsit.com 5161

application like Gmail by WebDriver. To show feasibility
of the approach we have taken the example of the login
page of a Gmail account.

The selenium test results are passed to TestNG test
framework to create proper readable reports. The main
advantage of using TestNG is that test cases can be grouped
easily, which in our case can be done for each browser or
for each use-case or both. Another advantage is that parallel
testing is possible. TestNG is a testing framework that is
capable of making easy to understand reports using
selenium tests results. Following is the screenshot of the
test suite created to run tests for login into a Gmail account
from all three browsers:

Figure 7: Login Compatibility Test Suite

Following is the html report of the test suite run for all three
browsers using TestNG:

Figure 8: TestNG Results of Compatibility

The report shown is of a test suite which included tests for
logging into a Gmail account run on all three browsers. It
contain the status that is passed or failed along with the
execution time taken by particular browser test case. The
summary report provides details of execution, duration, test
start time and end time. This helps in performing effective
analysis on the execution report.

V. CONCLUSIONS

Selenium is a framework which comprises of many
tools used for testing web applications. In this paper, a
prototype of the Compatibility Automation Test Keyword
Driven Framework has been created to perform automation
testing of web applications using Selenium WebDriver.

VI. FUTURE SCOPE

As a future scope of this paper, we can extend the
framework to be able to test the web application
functionality on mobile browsers and possibly different
resolutions. Since most people have started using browsers
on mobiles to open web pages, it becomes important to
ensure that our web application will be compatible with
them as well. Web based applications are usually designed
for desktop screens with high end processors and memory
as compared to mobiles. Mobile devices just don’t have that
space available. And hence, once are web application is
optimized to be accessed on mobiles, it will naturally
involve the testing to extend to mobile browsers as well.

ACKNOWLEDGMENT

The author(s) would like to thank Anand Motwani for
supporting this research.

REFERENCES
[1] http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6032495&ur

l=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6032121%2F6
032438%2F06032495.pdf%3Farnumber%3D6032495

[2] http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1667589
[3] http://www.ece.ubc.ca/~amesbah/docs/icse11.pdf
[4] http://www.ijascse.org/volume-3-issue-

10/Browser_compatibility_testing.pdf
[5] http://www.ijarcsse.com/docs/papers/Volume_4/6_June2014/V4I6-

0157.pdf
[6] http://www.softwaretestinghelp.com/types-of-software-testing/
[7] http://gmail.com
[8] http://www.seleniumhq.org/
[9] https://en.wikipedia.org/wiki/Web_testing

Anand Motwani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5159-5162

www.ijcsit.com 5162

